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Abstract 
 
Numerical solution for isothermal dissolution process of a spherical particle with a moving boundary and the 
presence of hydrodynamics effects of two different flow fields in a binary solution is described in this paper. The 
flow fields considered are slow viscous flow or Stokes flow and straining motion or shear flow around the particle. 
The parabolic differential equations were discretised with finite difference method in space, and the resulting set of 
ordinary differential equations on time was solved by the method of lines. The analysis includes the radial 
convective term generated due to the density differences between the solid and liquid phases. The effect due to the 
natural convection caused by density differences between both phases are evaluated and compared with the effect 
due to the low Reynolds convective flow field. The numerical solution for the isothermal dissolution of a spherical 
particle in a binary melt is not only compared with integral method for small times of the process but also the 
results are verified with mass balance integration. The integral method solutions are found to agree with the 
numerical results for small time of dissolution. 
 
Keywords: dissolution, moving boundary, spherical particle, Stokes flow, shear flow. 
 
Resumen 
 
Una solución numérica para el proceso de disolución isotérmico de una partícula esférica con valores a la frontera 
móvil con la presencia de efectos hidrodinámicos de dos diferentes flujos de fluido en una solución binaria es 
descrita en el presente artículo. Los dos flujos a considerar son flujo viscoso lento o flujo de Stokes y flujo de corte 
o cizalla alrededor de la partícula. Las ecuaciones diferenciales parabólicas fueron discretizadas con el método de 
diferencias finitas en las coordenadas radial y angular; el sistema de ecuaciones diferenciales ordinarias con 
respecto al tiempo fue resuelto por el método de líneas. El análisis incluye el termino convectivo radial que se 
genera debido a la diferencia en densidad entre la fase sólida y líquida. El efecto de la convección natural debido a 
esta diferencia en densidad entre ambas fases es comparado con el efecto debido a la convección producida debido 
a flujo con pequeños valores del número de Reynolds presentes en el proceso. Los resultados numéricos de la 
disolución isotérmica de una partícula esférica en una solución binaria no solo son comparados con el método 
integral para pequeños tiempos del proceso sino también los resultados son verificados con un balance de 
integración de masa. Las soluciones por el método integral se encontraron acordes con los resultados numéricos 
para pequeños tiempos de disolución. 
 
Palabras clave: disolución, frontera móvil, partícula esférica, flujo de Stokes, Flujo de corte o cizalla. 
 
1. Introduction 

 
    The change of phase from solid to liquid state and 
vice-versa is commonly observed in nature, just to 
mention some, the melting of ice in rivers and lakes, 
and during volcanic activities, say, cooling lava 
flows. There are many technical processes in 
metallurgy, such as casting, welding materials, and 

crystal growth from melts, in which the control of 
the solid-liquid phase change is of utmost importance 
for the quality of the fabricated product. 
    The rate of dissolution of silica quartz grains in 
glass making process and pores during sintering from 
a nearly isolated spherical particle of finite radius is, 
in many cases, controlled by inter-diffusion, and in 
some others, controlled by convection. A 



 E. Vázquez-Nava and C. J. Lawrence / Revista Mexicana de Ingeniería Química Vol. 6, No. 2 (2007) 157-168 

 158

quantitative model for this process requires 
derivation and solution of the mass transfer 
governing equation from the sphere with a moving 
boundary. 
    Glass batch melting in industrial scale has been 
studied under various conditions in order to optimize 
and control the melting process by many researches 
(Beerkens et. al., 1994 and Nemec, 1995a, 1995b 
and 1995c). It has been found that the dissolution 
phenomena plays an important role on the melting 
process of the glass batch. The conversion of batch 
to glass in the industrial process is governed by the 
rate of dissolution of the particles, and hence, the 
influence of internal melting factors on the 
diffusivity has been studied extensively by Cable and 
Frade, (1987a, 1987b and 1994). The melting of 
glass is extremely complex, it also involves surface 
reactions which has been examined by Hrma (1980), 
(1982), and Bodalbhai and Hrma, (1986). 
    The dissolution process necessarily occurs with 
concentration gradients in the liquid phase and 
convection arises under the action of density 
differences between both phases. Gelder and Guy 
(1975) pointed out that this influences not only the 
rate of dissolution but also the mass solute 
distribution in the liquid phase of a binary system. 
Readey and Cooper (1966) solved the dissolution 
problem in the absence of hydrodynamics effects 
taking into account the self-induced radial 
convection generated by the density differences 
during phase transition. Ruckenstein and Davis 
(1970) solved the diffusion-controlled growth or 
collapse of a spherical body that is moving within a 
surrounding fluid for low Reynolds numbers and 
potential flow for cases with a small depth of mass 
diffusion penetration inside the liquid. 
    When considering an isolated spherical particle in 
a binary melt, transport properties vary considerably 
between both phases, which result in totally different 
rates of mass transport from one phase to another. 
The fluid density is not a constant but varies locally 
with the solute composition. Although the fluid can 
be treated as incompressible, the density variation 
across the interface needs to be considered. 
     It is the purpose of this study to establish the 
differential governing equations for the process of 
isothermal dissolution of a spherical particle with a 
moving boundary within a flow field and solve them 
numerically for several cases of dissolution. 

 
2. Mathematical formulation. 
 

2.1 Governing equations 
 

     The partial differential governing equation for 
describing the process when a pure solid is dissolved 
in a binary solution is formulated from the 
conservative equations of momentum and mass: 
 2   0uμ ∇ =  (1) 

 2 .C u C D C
t

∂
+ ∇ = ∇

∂
 (2) 

     Since the velocity is not considered to depend on 
the concentration, the system of equations is solved 
semi-coupled. Numerical solution is found by 
obtaining first the velocity profiles from the 
momentum equation. Two flow fields are considered 
here, slow uniform viscous flow and straining 
motion past a sphere. For both cases the radial 
convective term generated due to the density 
differences between the solid and liquid phases is 
included. Due to the linearity in composition with 
respect to momentum, this convective flow field 
extra term is simply added to the mass transfer 
governing equation. 
     The velocity profile for slow viscous flow, 
normally found in literature as Stokes Flow (Bird, 
et.al., 1960), is easily obtained from expression (1): 

 
33 1cos  1

2 2r
h hv v
r r

θ∞

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (3) 

 
33 1 sin  1

4 4θ
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⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (4) 

    On the other side, the velocity profile for straining 
motion or shear flow (Vázquez-Nava, 2005) around 
the sphere is written next: 

( )
2 2

2 5 3 1 3cos  
2 2r

h h rv Ah
r r h

θ
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

(5) 

4

3  cos  sin  θ
r hv Ah
h r

θ θ
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (6) 

where A is a shear rate constant. 
     The mass transfer governing equation not only 
has to consider the convective velocity terms due to 
the flow field but it also has to include the radial 
fluid motion around the particle due to the 
differences in volume between liquid and solid 
phase. According to Readey and Cooper, (1966), the 
change of density at the liquid-solid system generates 
a fluid motion in the radial direction: 

 ( )
2

* 1r
h dhv
r dt

ϑ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (7) 

where ϑ = ρ s / ρ A. 
     Therefore, this last convective term is added to 
the compositional governing expression (2) in order 
to incorporate the effect due to the density 
differences between the solid and liquid phases, 
which describes the dissolution process for any flow 
field around the spherical solid particle and written 
next: 
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     The total rate of mass transferred from the 
spherical particle to the liquid phase according to 
ideas exposed in Ruckenstein and Davis (1970) is 
expressed as: 

 ( )
  

2

   0

2  sin  
r h

dm h j d
dt

π

π θ θ
=

= ∫  (9) 

where the mass flux density of solute is: 

 . Cj u C D
r

∂
= −

∂
 (9a) 

and: 

 *
r

dhu v
dt

= −  (9b) 

    The convective term velocity in the radial 
direction at the interface, *

rv , is the same stated in 
equation (7). When evaluated at the interface (r = 
h(t)) and according to these last couple of equations, 
expression (9) becomes: 
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2  sin  

s
i
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r h

dm dhh C
dt dt

Ch D d
r

π

ρ
π

ρ
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 (10) 

     On the other side, the rate of mass change from 
the sphere to the liquid is also expressed as: 

 24   s
dm dhh
dt dt

π ρ= −  (11) 

     These two last formulae lead to an equation for 
the moving boundary position at the liquid-solid 
interface: 

( )

  

   0

sin  
2 1 / r hs i A

dh D C d
dt C r

π

θ θ
ρ ρ =

∂⎛ ⎞= ⎜ ⎟− ∂⎝ ⎠∫  (12) 

 
2.2 Numerical solution 
 

     The analysis for the dissolution of a spherical 
particle in a flow field with a constant 
thermodynamic equilibrium at the interface due to 
isothermal conditions is simplified by making the 
mass balance dimensionless. It is convenient to 
reduce the equations by carrying out the next 
substitutions: 
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     For this particular case the dimensionless velocity 
profile and Péclet number definitions are established 
next for slow viscous flow and straining motion 
respectively: 
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     After transformation, the mass transfer governing 
equation becomes: 
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Fig. 1. Grid distribution for particle dissolution in slow uniform viscous flow. 
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Fig. 2: Grid distribution for particle dissolution in a straining motion. 

 
     Then, the integro-differential equation (12), 
which contains information about the moving 
boundary position, is written as: 

 

  

ˆˆ
   0

ˆ ˆ
sin  ˆ ˆ2

m

r h

dh C d
dt r

π

β
θ θ

=

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠∫  (16) 

     It is convenient not only to get the moving 
boundary fixed by employing a coordinate 
transformation in the radial direction but also to do a 
transformation in the angular direction in order to 
achieve better resolution in the transverse direction 
for the wake of slow viscous flow, according to the 
same ideas suggested in literature (Mei and 
Lawrence, 1996). The governing equations are 
modified with the next coordinate transformation 
(ξ,φ): 

( )
( )
[ ]

tanh ,               0 1

tanh 1 /
1 ,    0 1

tanh

r r h

θ

θ

ξ γ ξ

γ θ π
φ φ

γ

= − < <⎡ ⎤⎣ ⎦
−⎡ ⎤⎣ ⎦= − < <

 (17) 

where γr and γθ are arbitrary constants, which adjust 
the grid density along space. Numerical computation 
is performed using γr = 0.3, γθ =1.5. The mesh 
distribution generated with these last couple of 
equations is shown in Fig. 1. The grid points, which 
goes from 0 to π, are allocated in order to achieve 
better resolution near the bottom of the spherical 
body. 
     A successful transformation is the one which, 
whenever possible, improves the convergence of the 
finite difference solutions. The change of variable 
modifies the coordinate system (r,θ) to another 
coordinate system (ξ,φ). It transforms the map where 
the composition field is naturally described into a 
unitary map of coordinates for the dissolution 
process. For moving boundary problems in 
particular, it alleviates the difficulties generated in 
the boundary condition at the interface establishing a 
fixed domain, instead of having a moving coordinate 
map. 

     For straining motion or shear flow around a 
dissolving particle, the governing equations are 
written in transformed coordinates (ξ,φ) according to 
the next couple of expressions: 

 
( )
( )
[ ]

tanh ,       0 1

tanh 2 /
,     0 1

tanh

r r h

θ

θ

ξ γ ξ

γ θ π
φ φ

γ

= − < <⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦= < <

 (18) 

where γr and γθ, are arbitrary constants, which adjust 
the grid density along space. Numerical computation 
is performed using γr = 0.21, γθ =1.75.The mesh 
distribution generated with these last set of 
equations, which goes from 0 to π/2, is shown in Fig. 
2. For shear flow, the grid points are allocated in 
order to achieve a better resolution at the top and 
bottom of the spherical body. Numerical 
computations were performed with nr =150 grid 
points and nθ = 50 grid points for both flow fields; 
with this arrangement, the numerical resolution turns 
out to be usually sufficient. 
     Carrying out the transformations the mass 
governing equation become: 
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where f1 , f2, f3 and f4 are functions of the form f(ξ,φ), 
naturally generated due to the coordinate 
transformations, written next: 
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where fa , fb, fc… are defined for slow viscous flow 
(Stokes flow): 
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     Similar expressions were obtained for the 
straining motion case (Vázquez-Nava, 2005). 
     At the interface, the moving boundary velocity 
expression (16), which it has already been properly 
modified according to the respective coordinate 
transformation, is integrated by the trapezium rule 
and become a part of the system of differential 
equations that has to be solved with those generated 
from the governing equation (19). Finally, the set of 
differential equations is solved by the method of 
lines. 
     The method of lines technique converts the partial 
differential equation into a set of simultaneous 
ordinary differential equations. These equations can 
be quite stiff (Shastri and Allen, 1998), possibly one 
of the reasons in the method of lines not being a 
popular technique. The system of ordinary 
differential equations depending on time was solved 
numerically with the aid of DDASSL fortran 
subroutines, which employ backward differentiation 
formulas. The subroutine, designed by Linda 
Petzold, belongs to a collection of mathematical 
software, papers and databases called netlib, which is 
also available on the internet 
(http://www.netlib.org/ode/ddassl.f). 
 
3. Comparison of results 
 

3.1 Integral method 
 

     Finite difference methods allow us to carry out 
simulations for the whole dissolution process. It is 
the purpose of this section to establish a solution 
when the mass transfer has just begun and the 
distance of penetration of mass diffusion from the 
particle into the liquid phase is short. This small 
distance of penetration, ‘δ ’, is associated with a 
boundary layer thickness so that the solution 
provides not only the depth layer thickness but also 
automatically establishes the moving boundary 
location. 
     There exists no exact solution for the problem of 
mass transport in a continuous liquid phase from a 

single spherical particle within a viscous flow field, 
which is described with the mass transfer governing 
equation: 

 
2 *

2

1 
r

θ
r

vC C Cv
t r r

C CD r v
r r rr

θ
∂ ∂ ∂

+ +
∂ ∂ ∂

⎡ ∂ ∂ ⎤ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

 (20) 

     Particularly, this expression does not take into 
account how composition varies with respect to the 
angular position for the integral solution, since only a 
very small thickness of penetration is considered. 
Boundary conditions for this last equation are: 

( )    when          iC C r h t= =  (21) 
   when       mC C r= →∞  (22) 

     The equation for the moving boundary remains 
the same as before for the numerical solution: 
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   0

sin  
2 1 / r hs i A

dh D C d
dt C r

π

θ θ
ρ ρ =

∂⎛ ⎞= ⎜ ⎟− ∂⎝ ⎠∫  (23) 

     The continuity equation is written as: 

 ( ) ( )2
2

1 1  sin 0
sinr θr v v

r rr
ρ ρ θ

θ θ
∂ ∂

+ =
∂ ∂

 (24) 

     The established penetration distance ‘δ ’ has 
special properties, such that for r > δ there is no 
mass transferred beyond that point. For all practical 
purposes, at the interface r = h(t), there exist 
constant thermodynamic equilibrium conditions. In 
order to simplify the solution, a coordinate 
transformation is defined as: 
 ˆ ˆˆ ˆˆ ˆ            z r h r z h= − = +  (25) 
     The scaling for the mass governing equation for 
slow viscous flow is the same as in the numerical 
solution. Expressions (20) and (24) are added 
together in order to obtain an expression more easily 
integrated, which in dimensionless form become: 
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θ
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θ
θ
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+ +

∂ ∂

∂
+ +

∂

∂ ∂ ∂
= + +

∂ ∂∂

 (26) 

     If the diffusion boundary layer is thin then it is 
only the velocity distribution near to the particle 
surface that is required. The velocity distribution in 
the region ˆẑ h<< , is obtained by expanding the 
velocity profile expressions for slow viscous flow in 
power of ˆˆ /z h , similar expressions can be obtained 
for straining motion or shear flow (Vázquez-Nava, 
2005). For small ˆˆ /z h  it is obtained: 

 
ˆ3ˆ ˆ0     sinˆ2r θ
zv v Pe
h

θ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (27) 

     The technique developed here for mass transport 
is basically the same known in literature as von 
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Karman-Pohlhausen method for boundary layer 
theory. The diffusion convective equation is 
integrated over the boundary layer thickness from 0 
to δ, the resulting expression is called the integral 
equation. The concentration profile will be 
compelled to satisfy the integral equation but not the 
original mass transfer governing equation. The mass 
balance equation will, thereby, be satisfied only in an 
average sense. 
     Expression (26) is integrated from 0 to δ to 
generate the integral equation: 

( )

( )

      

   0     0
   

ˆ 0
   0

1ˆ ˆˆˆ ˆ     ˆˆ

ˆˆcot 2ˆˆ ˆ ˆ ˆ ˆˆ

θ

θ

z

C dz v C dz
t h

C dhv C dz  
z dth h

δ δ

δ

θ

θ ϑ
=

∂ ∂
+

∂ ∂

⎛ ⎞∂
+ = − − −⎜ ⎟⎜ ⎟∂⎝ ⎠

∫ ∫
∫

 (28) 

     The choice of a satisfactory approximation for the 
concentration profile is acknowledged to be an 
important step when employing the integral method 
approach. For this particular case, the concentration 
is approximated by a second order polynomial: 

 
2ˆˆ 1 zC

δ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (29) 

     The use of a higher-order polynomial, does not 
necessarily improve the accuracy of the solution 
(Caldwell and Chiu, 2000). The polynomial equation 
has already been arranged to be consistent with the 
boundary conditions. Integral method results are 
more accurate when the process have had short time 
of progress so that the composition profile is well 
described with a second order expression (29). This 
polynomial together with the integral equation (28) 
generates the next differential equation for slow 
viscous flow: 
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d dPe
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where: 

 

   

ˆ 0
   0

   

   0

ˆ ˆ
sin   ˆ ˆ2

sin     

m

z

m

dh C d
dt z

β d

π

π

β
θ θ

θ θ
δ

=

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

= −

∫
∫

 (31) 

     The last couple of differential equations gives the 
integral method solution. The obtained results, 
although not exact, are often sufficiently accurate for 
engineering purposes. 
 
3.2 Mass balance integration 

 

     Analytical methods offer an exact solution, but 
due to the nonlinear nature of the moving boundary, 

the mass governing equation that describes the 
dissolution of a spherical particle has to be solved 
numerically. When a numerical technique is 
employed there always exists an uncertainty about 
accuracy in the results. 
     Integral method is restricted in the range of 
validity for small period of time so that the results 
were not expected to be valid for the whole 
dissolution process. For this reason, mass balance 
integration was implemented in order to be able to 
verify the obtained answer from the numerical 
solution. 
     The mass transfer governing equation is written in 
its dimensionless form: 
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 (32) 

     This equation can be integrated between the limits 
from ‘0’ to ‘π ’ in the angular direction and from 
‘h(t)’ to ‘∞’ in the radial direction together with the 
velocity expressions for slow viscous flow and the 
next following expression is obtained: 
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∫ ∫  (33) 

     The last equation allows to verify numerical 
results, simulations turn out to deviate by less than 
0.1 % from the expected value when comparing 
numerical results from both sides of the equation, 
which gives confidence in the obtained results for 
describing the isothermal dissolution within a low 
Reynolds flow field. 
 

  

 
Fig. 3: Rate of dissolution in uniform slow viscous 
flow tend ≈ 0.14. The dashed line represents the 
integral method solution and the solid line represents 
the numerical solution (Pe = 5.0, βm = 3.0, ϑ = 0.5). 
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4. Results and discussion 
 

     Integral method predicts quite the same as 
numerical solution does when isothermal dissolution 
within a flow field has just evolved a small period of 
time, as illustrated in Fig. 3. Finite differences 
solution generates a set of differential equations to be 
solved for each grid point, numerical computations 
were performed with 150 x 50 nodes. Integral 
method requires only 253 differential equations to be 
solved. 
 
  

 
Fig. 4: Composition profile evolution at θ = π when 
ˆ 0.018t ≈  (Pe = 5.0, βm = 3.0, ϑ = 0.5, tend = 0.14). 
 
     At the particle bottom, integral method was 
expected not to describe properly the process 
because mass diffusion thickness increases sharply at 
this point due to slow viscous flow direction, in spite 
of this adverse circumstance, there were acceptable 
results for short periods of time, as shown in Fig. 4. 
However, not for all physical conditions was 
possible to obtain same flatter results. Fig. 5 
illustrates conditions where not only the slow viscous 
flow field is diminished but also the mass gradient 
driving force around the particle is weaker. 
Particularly, for such conditions, integral method 
was expected to give a much better prediction, 
however the density change parameter, affect also 
markedly the dissolution process. It is clearly evident  
 
  

 
Fig. 5: Composition profile evolution at θ = π when 
ˆ 0.05t ≈  (Pe = 2.5, βm = 1.5, ϑ = 1.5, tend = 0.39). 
 

that the number of competing effects involved in the 
process are so many that the complex nature of the 
event cannot be satisfactorily described by 
employing an expression (20) where composition 
diffuses just a small thickness of penetration. 
     There always exists an uncertainty about results 
when a solution is obtained through numerical 
techniques. Integral method was implemented in 
order to verify, somehow, that both solutions predict 
approximately similar results within the range of 
validity of integral method. Mass balance integration 
become a more reliable method in order to verify 
numerical results, simulations turn out to deviate by 
less than 0.1% from the expected value, which gives 
confidence for the numerical results as an acceptable 
description for the isothermal dissolution within a 
low Reynolds flow field. 
     Two types of advective terms are competing 
during isothermal dissolution: the radial convective 
fluid motion due to the density differences between 
both phases and the convective terms included due to 
the low Reynolds flow field around the particle. 
When the density change parameter takes ϑ < 1.0 
values, the rate of dissolution increases rather than it 
does for values of ϑ > 1.0, as shown in Fig. 6, this is 
explained because for ϑ < 1.0 values there exist a 
decrease in volume during phase transition, which 
generates a fluid motion toward the interface; the 
opposite situation occurs for values of ϑ > 1.0. This 
liquid motion may be interpreted as suction and/or 
blowing effect across the interface. Same figure also 
illustrates how the rate of sphere shrinkage increases 
while slow viscous flow field takes higher Péclet 
values. It is worth to mention that these conditions 
were the best obtained results in order to show a 
significant increase on the rate of dissolution. The 
process is not strongly affected by slow viscous flow 
around the sphere, similar results were also obtained 
for shear flow either. 

 

 
Fig. 6: Rate of dissolution in uniform slow viscous 
flow, a) Pe = 5.0 and βm = 1.5 for ϑ = 0.5, 1.0,1.5 b) 
βm = 0.5 and ϑ = 1.5 for Pe = 0.0, 5.0, 10.0. 
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Fig. 7: Isotherm contours around a dissolving particle within uniform slow viscous flow, the process occurs in 15 
stages equally distributed on time (tend ≈ 0.78, Pe = 10.0, ϑ = 1.5, and βm = 0.5). 
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Fig. 8: Isotherm contours at the end of particle dissolution in uniform slow viscous flow, a) tend ≈ 0.78 ( Pe = 10.0, 
ϑ = 1.5, βm = 0.5), b) tend ≈ 0.19 ( Pe = 10.0, ϑ = 1.5, βm = 5.0). 
 
    Stokes or slow viscous flow affects sensibly the 
mass solute distribution around the stationary 
particle in a binary liquid melt, as illustrated in Fig. 
7. The rate of dissolution around the sphere is 
influenced very weakly when Péclet number varies. 
At the particle top, mass hardly diffuses due to the 
flow field direction and boundary layer is very thin; 
since fluid is incompressible, thickness may seems to 
move according to the interface position. 
Compositional differences between the solid and the 
melt significantly affect the rate of sphere shrinkage, 
as illustrated in Fig. 8. Mass driving force, which is 
taken into account in the parameter βm , influences 
not only the dissolution time but also the mass solute 
distribution around the particle, while density change 
parameter ϑ and convection due to the flow field 
included in the Péclet number are maintained 
constant. 

     Similar results were obtained for the isothermal 
dissolution within straining motion or shear flow 
around the sphere, as illustrated in Fig. 9. 
Contribution of convective transport due to the flow 
field intensity expressed in the Péclet number do not 
affect the dissolution time but it does influence the 
mass solute distribution around the particle, as 
shown in Fig. 9 a) and 9 b). With Pe and ϑ constant, 
increases in βm parameter decreases the time it takes 
for the process to finished and also mass diffusion 
around the particle become clearly affected as seen 
by comparing Fig.s 9 a) and 9 c). The mass driving 
force influence the rate of dissolution more 
pronounced than it does the convective transport 
from the flow field. 
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Fig. 9: Isotherm contours around the particle at the end of dissolution during straining motion a) tend ≈ 0.72 ( Pe = 
1.5, ϑ = 0.5, βm = 0.5), b) tend ≈ 0.74 ( Pe = 0.5, ϑ = 0.5, βm = 0.5), c) tend ≈ 0.1 ( Pe = 1.5, ϑ = 0.5, βm = 5.0). 
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Fig. 10: Isotherm contours around a dissolving particle within straining motion, the process occurs in 15 stages 
equally distributed on time (tend ≈ 0.91, Pe = 0.75, ϑ = 1.5, and βm = 0.5). 
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     The obtained results, in terms of the rate of sphere 
shrinkage, are similar for both straining motion and 
slow viscous flow. Flow field mostly increases 
notoriously the dissolution rate during the last stages 
of the process, when the available surface area for 
mass diffusion becomes smaller in comparison to the 
original particle. At this very end of the process, the 
rate of dissolution tend to increase markedly in the 
presence of the flow field, this effect dominate, no 
matter the increased solute concentration around the 
tiny particle. Isotherm patterns with Péclet number 
equal to 0.75 for the full progress of dissolution 
phenomena within straining motion are shown in 
Fig. 10. Mass solute distribution around the spherical 
particle is increased naturally at the top and bottom 
of the particle due to the flow field. 
 
Concluding remarks 
 

     At the very beginning of the process, when the 
evolved time is small enough for composition profile 
to be described with a second order approximation 
(29), integral and numerical solution were found to 
be in closed agreement for many obtained results. 
However, not for all physical conditions was 
possible to obtain an acceptable approximation. Mass 
balance integration did offer a more effective route 
in order to verify numerical results. 
     The density change parameter during isothermal 
dissolution, which naturally arises as a convective 
term, generates a fluid motion toward the interface if 
the liquid is more dense and away from the interface 
if the solid is denser as a result of mass conservation. 
This radial fluid motion due to density differences 
during phase transition in some circumstances may 
influence more pronouncedly than it does the slow 
convective flow field. 
     The time taken for finishing the process decreases 
when compositional difference between the solid and 
the melt increases. Mass driving force influences the 
rate of dissolution more pronouncedly than it does 
the convective transport from the flow field. 
Convective transport mostly distributes the solute 
around the sphere according to the fluid flow 
direction. Dissolution time is not accelerated 
significantly due to the flow because the liquid 
motion has low Reynolds number. At the last stages, 
not only the smaller available particle surface for 
mass transport influenced the rate of dissolution but 
clearly also the flow field shows more effectively its 
effects in spite of the increased amount of solute 
around the tiny sphere. 
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Nomenclature 
Roman Letters 
A shear rate constant 
C mass concentration 
D binary diffusion coefficient 
f numerical functions from coordinate 

transformation. 
h interface position as a function of time 
j mass flux density of solute 
m mass 
Pe Péclet number 
r radial coordinate 
t time 
u velocity 
v velocity due to flow field 

*
rv  radial fluid motion due to the change of 

density 
z coordinate transformation for integral method 
 
Greek Symbols 
μ viscosity 
θ angular coordinate 
ρ mass density 
ϑ density change parameter 
β dimensionless parameter 
ξ radial coordinate transformation 
φ angular coordinate transformation 
γ stretching coordinate parameter 
δ boundary layer thickness 
 
Subscripts 
A refers to the pure solute in liquid state 
end refers to the end of the process 
i refers to the equilibrium interface 
m refers to the far field liquid melt 
o refers to initial conditions 
s refers to the solid 
r refers to radial direction 
θ refers to angular direction 
∞ refers to far field position 
 
Superscripts 
^ refers to a dimensionless variable 
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